SPECIAL ARTICLE

Treatment of peripheral arterial disease in diabetes: A consensus of the Italian Societies of Diabetes (SID, AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE)

A. Aiello a, R. Anichini b, E. Brocco c, C. Caravaggi d, A. Chiavetta e, R. Da Ros f, M.E. De Feo h, R. Ferraresi i, F. Florio j, M. Gargiulo k, G. Galzerano l, R. Gandini m, L. Giurato n, L. Graziani o, L. Mancini p, M. Manzi q, P. Modugno r, C. Setacci s,
L. Uccioli n,*
a P.O. Campobasso – ASReM, Campobasso, Italy
b Servizi di Diabetologia, USL 3, Pistoia, Italy
c Policlinico Abano Terme, Presidio Ospedaliero ULSS 16, Veneto, Italy
d Istituto Clinico “Città Studi”, Milan, Italy
e A.O. Cannizzaro, Catania, Italy
f Dipartimento Radiologia Diagnostica, interventistica e medicina nucleare, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
g Centro Diabetologico Monfalcone (GO) – Ass2, Gorizia, Italy
h U.O. Diabetologia A.O.R.N. “A. Cardarelli”, Naples, Italy
i Emodinamica Interventistica Cardiovascolare, Istituto Clinico Città Studi, Milan, Italy
j IRCSS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
k Chirurgia Vascolare, Azienda Policlinico S. Orsola-Malpighi, Bologna, Italy
l Department of Surgery Vascular and Endovascular Surgery Unit, University of Siena, Siena, Italy
m Dipartimento Diagnostica per immagini, Imaging molecolare, radioterapia e radiologia interventistica, Policlinico Universitario Tor Vergata, Rome, Italy
n Diabetic Foot Unit, Dept of Internal Medicine, Policlinico Universitario Tor Vergata, Rome, Italy
o Unità Operativa di Cardiologia Invasiva, Istituto Clinico “Città di Brescia”, Brescia, Italy
p Istituto Dermatologico Immacolata IRCCS, Rome, Italy
q Radiologia Interventistica, Policlinico Abano Terme, Presidio Ospedaliero ULSS 16, Veneto, Italy
r Dipartimento Malattie Cardiovaskolare Fondazione Giovanni Paolo II, Università Cattolica Sacro Cuore, Campobasso, Italy

Received 5 June 2013; received in revised form 31 October 2013; accepted 1 December 2013
Available online

KEYWORDS
Diabetic foot; Peripheral arterial disease; Angioplasty; Limb salvage

Abstract Diabetic foot (DF) is a chronic and highly disabling complication of diabetes. The prevalence of peripheral arterial disease (PAD) is high in diabetic patients and, associated or not with peripheral neuropathy (PN), can be found in 50% of cases of DF. It is worth pointing out that the number of major amputations in diabetic patients is still very high. Many PAD diabetic patients are not revascularised due to lack of technical expertise or, even worse, negative beliefs because of poor experience. This despite the progress obtained in the techniques of distal revascularisation that nowadays allow to reopen distal arteries of the leg and foot. Italy has one of the lowest prevalence rates of major amputations in Europe, and has a long tradition in the field of limb salvage by means of an aggressive approach in debridement, antibiotic therapy and distal revascularisation. Therefore, we believe it is appropriate to produce a consensus document concerning the treatment of PAD and limb salvage in diabetic patients, based on the Italian experience in this field, to share with the scientific community.
© 2013 Elsevier B.V. All rights reserved.

* Corresponding author. Department of Internal Medicine, Policlinico Universitario Tor Vergata, Viale Oxford 81, 00133 Rome, Italy. Tel.: +39 06 20902784; fax: +39 06 20902806.
E-mail addresses: luigi.uccioli@ptvonline.it, luccioli@yahoo.com (L. Uccioli).

0939-4753/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.numecd.2013.12.007

Please cite this article in press as: Aiello A., et al., Treatment of peripheral arterial disease in diabetes: A consensus of the Italian Societies of Diabetes (SID, AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE), Nutrition, Metabolism & Cardiovascular Diseases (2014), http://dx.doi.org/10.1016/j.numecd.2013.12.007
Diabetic foot (DF) is a chronic and highly disabling complication of diabetes that affects patients with peripheral neuropathy (PN) and/or peripheral arterial disease (PAD). It has been traditionally considered that DF is caused by PN, but epidemiological data have shown that the prevalence of PAD is high in diabetic patients [1,2] and, associated or not with PN, can be found in 50% of cases with lower limb lesions [3]. The presence of PN may mask the typical clinical symptoms of PAD, such as claudication and pain at rest, and so an ulcer that fails to heal and/or more or less extensive gangrenous areas of the foot may be the first signs of previously unknown PAD.

DF generally affects patients with long duration of the disease and, as they may also be affected by various co-morbidities, they may be particularly fragile and difficult to manage clinically. The high rate of (especially cardiovascular) co-morbidities means that attention should not be exclusively focussed on the foot with an ulcer, but takes into account the patient as a whole and the various clinical conditions that can jeopardise his or her life and have a negative impact on treatment. It would be a mistake to consider the foot separately from the rest of the body because DF is a local manifestation of a systemic condition.

Another aspect that needs to be considered is the complexity of the manifestations of DF, which include ischaemia, neuropathy, biomechanical problems, infection, wound healing and so on. This complexity practically rules out any single specialist approach and requires the assistance of a multidisciplinary team capable of guaranteeing functional rehabilitation of the foot and, whenever possible, optimising the patient’s clinical condition. The team should include a diabetologist, a vascular surgeon, an interventional radiologist, an orthopaedic surgeon, a specialist in infectious diseases, a cardiologist, an orthopaedic technician and a podiatrist. A multidisciplinary approach has proved to be the winning formula in many published experiences [4,5].

The high prevalence of PAD in diabetic patients in general [1–3,6,7] is due to the nature of the disease itself, but other factors such as the longer average life span, a longer disease duration and (in diabetics with end-stage renal failure) the role of dialytic treatment should not be underestimated [8]. This indicates the burden that the renal failure (and, between studies. A recent review by Jude indicates that its prevalence among diabetics is 8–30% [18]; Faglia estimates a prevalence of about 22% in patients newly diagnosed type 2 diabetes [2], and Prompers a prevalence of about 50% in diabetic patients with foot ulcers [3].

Characteristics of PAD in diabetic patients

PAD in diabetic subjects is a systemic, obstructive atherosclerotic disease with some particular histopathological characteristics, especially the higher incidence of vascular calcifications [19–24]. In comparison with non-diabetics, diabetic patients with PAD are generally younger, have a higher body mass index (BMI), are more often neuropathic and have more cardiovascular co-morbidities [25].

The clinical peculiarities of obstructive arteriopathy in diabetic patients are its rapid progression and prevalently distal and bilateral topographical expression. Furthermore, the arterial walls are often calcified and occlusions are more frequent than stenoses. The natural adaptive response to reduced flow inside an artery is neoangiogenesis, but this and the capacity to generate compensatory collateral circulations are reported to be reduced in diabetic subjects [26–33], even if a recent observation shows better collateral development towards the culprit vessel at least in the coronary artery disease [34].

Anatomical characteristics

The anatomical distribution of PAD is different in the diabetic and non-diabetic populations. In diabetic subjects, PAD more frequently affects below-the-knee vessels such as the tibial and peroneal arteries and is symmetric and multi-segmental, and the collateral vessels can also be affected by stenosis [35,36].

The severity of the lesions is also different in the two populations, with diabetic subjects having a larger number of treatments.
of stenoses/obstructions of the deep femoral, popliteal, peroneal, anterior and posterior tibial and even the plantar arteries [37,38].

It is essential to define the type and extent of PAD when deciding the clinical prognosis because infra-popliteal involvement is associated with a high risk of major amputation in diabetic subjects who have not undergone distal revascularisation [39]:

- PAD is a common complication of diabetes and affects more than 50% of the patients with ulcers.
- Its localisation is predominantly distal and symmetrical, and it is rapidly progressive.

Evolution and prognosis

The initial clinical picture is rarely symptomatic (claudication may be absent because of concomitant PN) and more frequently characterised by the ischaemic lesions and gangrene typical of more advanced disease stages. For this reason, the current clinical classifications of PAD are not really applicable in the presence of diabetes and foot ulcers, and it is more appropriate to use the University of Texas Wound Classification System [40]. PAD is present in 50% of diabetic patients with ulcerative wounds and is a widely recognised risk factor for major amputations.

The negative prognosis of ischaemic ulcerative lesions in diabetic patients is probably related to the co-existence of factors such as the anatomical distribution of PAD, infection, neuropathy and renal insufficiency and the concomitant presence of other coronary and cerebral vascular manifestations. About 27% of diabetic subjects with PAD experience progressive disease in the following 5 years, and 4% undergo major amputation; about 20% manifest a cardiovascular event (myocardial infarction or stroke). The prognosis of diabetic patients with critical limb ischaemia (CLI) is even more serious as 30% may require a major amputation and 20% die of cardiovascular disease within 1 year [41].

Non-revascularisation of PAD diabetic patients is an independent predictive factor of amputation [16] and also an independent determinant of poor survival [18].

The risk of co-existing ischaemic heart disease in diabetic patients with PAD is 50% [42–44]. The simultaneous presence of silent and non-silent myocardial ischaemia is significantly more frequent in diabetic than in non-diabetic subjects [45,46], which means that all diabetic patients with PAD should undergo diagnostic investigations of the coronary district in order to identify any previously unknown coronary disease.

Diabetic patients with PAD have frequently a concomitant chronic renal insufficiency (CRI) requiring haemodialysis, which means that the vascular damage is more severe and progresses more rapidly than in diabetic patients without end-stage renal disease. Renal disease is one of the most important factors underlying the unfavourable course of an ulcerative lesion, and dialysis is one of the main risk factors for ulceration and amputation in diabetic patients [3,47].

Distal revascularisation in dialysed patients is a challenge because they are more susceptible to infections, uraemia further hinders the healing of ulcerative lesions and PAD is complicated by the presence of marked calcifications of the vessel walls. Furthermore, the risk of major amputation is 4.7 times higher than in non-dialysed subjects [8].

Diabetic subjects with renal insufficiency also experience more perioperative complications such as sepsis and heart failure, and there is a high rate of mortality due to surgical revascularisation (2.4–13%) [8].

However, despite the complexity of the local and general management of diabetic PAD patients undergoing dialysis, recent data show that 1-year limb salvage can be as high as 65–75% [48].

- Diabetic patients rarely experience the early symptomatic manifestation of PAD (claudication) because of the frequent concomitance of sensitive motor neuropathy.
- The current classifications of PAD in non-diabetic patients do not apply to diabetics.
- Ischaemic wounds, ulcers and gangrene are frequent initial signs of PAD in diabetic patients.
- It is appropriate to use the University of Texas Wound Classification System.
- Fifty percent of diabetic patients with PAD also have possibly silent ischaemic heart disease: a thorough diagnosis is needed that also includes the coronary and carotid regions.
- Diabetic patients with CLI undergoing dialysis have a more serious and rapidly progressive form of PAD that is very difficult to treat.

Assessing impaired perfusion in a DF

In the case of suspected PAD, a number of examinations need to be carried in order to assess the severity of the clinical picture. Centres that mainly screen and manage less complex wounds should non-invasively determine whether the patient is ischaemic or not and, above all, evaluate whether the ischaemia has any negative effect on the evolution of the ulcerative lesion.

It is important to emphasise the need to transfer ischaemic patients to a specialised, multidisciplinary centre as soon as possible [49]. Published data show that ischaemic lesions are less likely to heal, and that the onset of infection can transform an originally mild lesion into gangrene. This risk increases with the duration of the lesion and the continuation of ineffective treatment without appropriate revascularisation.

PAD should be sought in all diabetic subjects with foot ulcers. The evaluation begins with a search for arterial pulses (femoral, popliteal, posterior tibial and dorsalis pedis) but, despite this being essential in the case of epidemiological investigations, it has some limitations when it comes to verifying the presence of an ischaemic component in patients affected by ongoing ulcers. In particular, the dorsalis pedis pulse may be absent in up to
30% of patients free of vascular disease, is poorly reproducible and may sometimes be detected even in the presence of ischaemia. The posterior tibial pulse seems to be more reliable and provides more certain information concerning the presence or absence of ischaemic condition. It needs to be underlined that the obstruction of one tibial artery (or only the plantar arch in diabetics) can lead to an ischaemic ulcer, and so the presence of a single well-palpated tibial pulse does not exclude it. However, the greatest limitation of using pulses to evaluate ischaemia is the fact that an absent pulse does not provide any information concerning perfusion deficit and therefore the healing potential of the lesion itself [50]. In a large-scale survey of diabetics with an ulcer and peripheral ischaemia, Apelqvist found that >50% of the patients would not have been classified as ischaemic if they had not undergone an instrumental evaluation [51].

Furthermore, the semiotic methods that are widely used when diagnosing non-diabetics, such as the search for femoral pulse or position-related changes in foot colour, can be influenced by many confounding factors and so using them alone to diagnose PAD in diabetic subjects is considered not sufficient [52].

It is clear that the presence of an ulcer requires a more objective evaluation, not least because this can guide therapeutic decision-making, particularly the need for revascularisation.

Diabetic patients with limb ischaemia can be non-invasively evaluated in different ways but, as each of them has different advantages, disadvantages and limitations, it is often necessary to integrate them. The ankle/brachial pressure index (ABI) is the ratio of the systolic pressure in the ankle to that in the arm and is considered a reference test insofar as it is reproducible, sensitive and specific in detecting PAD. In diabetics, it should be calculated using whichever is the lower of the systolic pressure in the anterior and posterior tibial arteries [53]. The American Diabetes Association recommends using the ABI to screen all diabetics aged >50 years and all insulin-dependent diabetics regardless of age in the presence of other cardiovascular risk factors. On the basis of the ABI, it is possible to define the entity of peripheral vascular impairment: 0.91–1.30 = normality; 0.70–0.90 = mild; 0.40–0.69 moderate; and <0.40 = severe [54]. From the clinical point of view, in the presence of an ulcer, an ABI of >0.7 is indicative of reduced perfusion but it is still sufficient to ensure healing. In any case, a reduced ABI is an important predictor of cardiovascular events and premature death [55]. An ABI of >1.30 indicates that the arteries are scarcely compressible because of the presence of extended calcification of the walls, but does not exclude the presence of PAD [56]. This value has negative prognostic implications per se insofar as it correlates with FN [57] and is a risk factor for cardiovascular events [58], but is non-diagnostic in the case of PAD. The same calcifications may sometimes lead to a falsely normal ABI, but the search for pulses can help in diagnosing PAD [59,60]. Wall calcifications are common in subjects with long-lasting diabetes, those undergoing dialysis (particularly if diabetic) and the elderly.

One test that is currently used to overcome the problem of calcifications is to measure toe systolic pressure and calculate the ratio between it and brachial systolic pressure (the toe/brachial index, TBI) [61]. This is possible because toe vessels are generally free of calcifications. Under normal conditions, the pressure of the hallux is about 30 mm Hg less than that of the ankle, and the TBI is >0.71. A TBI of <0.71 is indicative of PAD, but absolute values of >50 mm Hg indicate sufficient perfusion to guarantee ulcer healing in diabetic patients, whereas values of <50 mm Hg indicate critical ischaemia and values of <0.3 insufficient perfusion for healing [62]. This test is impossible in patients with digital gangrene.

Transcutaneous oximetry (TcPO₂) measures the transcutaneous partial pressure of oxygen, and is indicated for diabetic patients with ulcerative or gangrenous lesions, claudication or pain at rest insofar as it is a measure of the presence and severity of PAD and can provide information concerning the healing potential of a lesion [63]. The reference value is 50 mm Hg, whereas values of <30 mm Hg indicate little healing potential. The relationship between TcPO₂ and perfusion is not linear because values equal to zero do not really indicate the absence of flow but a state of severe ischaemia in which all of the available oxygen is consumed by the tissues. There are a number of conditions under which the test value should be considered cautiously: for example, the presence of peripheral oedema or widespread cellulitis that can influence the measurements and lead to unreliable values. TcPO₂ is also used to define amputation levels as values of >50 mm Hg predict a good likelihood of surgical wound healing, whereas healing is uncertain at values of 30–50, and improbable at values of <30 [64].

Duplex ultrasonography (echo Doppler) allows the morphological/functional study of the vascular tree [65]. According to some experts, the information provided by duplex scans is sufficient to indicate which patients should undergo revascularisation, but others believe further diagnostic evaluations such as magnetic resonance (angi-MR) or computed tomography angiography (angi-CT) are necessary. It needs to be underlined that the American College of Cardiology/American Heart Association guidelines recommend the use of angio-MR rather than angi-CT because it allows better definition and leads to fewer technique-related risks [66].

Invasive arteriography is never considered a diagnostic technique per se, but represents the first step in endovascular therapy; it can only be proposed for diagnostic purposes in cases in which the other methods have failed to define the extent and topography of stenotic/obstructive arterial disease.

Diagnosis evaluation before revascularisation

The preoperative evaluation of diabetic patients at risk of limb loss is a much-debated subject because the need to characterise the arterial bed of patients with advanced vasculopathy in a detailed manner conflicts not only with the need to be as uninvasive as possible but also with the...
high costs of the most advanced diagnostic techniques. Furthermore, despite the tumultuous progress of vascular imaging techniques, none can be considered a gold standard that satisfies all diagnostic needs.

The correct evaluation of patients with PAD cannot be limited to the lower limbs but should also include the aortic vessels, abdominal aorta and renal arteries because this would reduce the number of co-morbidities associated with revascularisation.

The techniques currently used for vascular studies are duplex ultrasonography, angio-CT and angio-MR. Duplex ultrasonography is considered to be the most important and, in many centres, is the only technique used before revascularisation procedures. One of its main advantages is that it provides information concerning the haemodynamics of the obstructive arteriopathy and the state of run-off [67]. However, it has often been limited by its operator dependence and the patient’s condition [68], although these factors certainly have less impact in centres that carry out a large number of examinations. Nevertheless, a complete evaluation including the renal arteries, the abdominal aorta, the iliac axes, the femoro-popliteal axis and leg vessels takes a long time.

The use of angio-CT and angio-MR has made it possible to obtain repeatable and panoramic images that not only assist the planning of the revascularisation procedure but also allow the simultaneous evaluation of any other area of vascular disease in just a few minutes [69]. However, they have the drawbacks of being expensive and not widely available. Among other things, angio-MR is playing an increasingly important role in pre-revascularisation assessments of the vascular tree because the new-generation coils make it possible to obtain panoramic views from the intracranial circulation to the plantar arch and avoid the use of nephrotoxic contrast media. MR is highly sensitive and specific in the various vascular districts, and its performance is similar to that of standard angiography at the level of the iliac aorta, the femoro-popliteal axis and the renal and carotid arteries. Its main limitations are related to venous contamination of the foot, the lack of information concerning the type of plaque causing the stenosis/obstruction (calcified, lipid or fibrous), the absence of signal in the presence of ferromagnetic artefacts (metal stents and arthroprostheses) and the general contraindications to MR such as pacemakers, claustrophobia, etc [70].

Multilayer angio-CT is currently considered the gold standard in most vascular districts, where its sensitivity and specificity are similar to those of arteriography. It optimally characterises the type of plaque causing the stenosis/obstruction and therefore makes it possible to choose the most suitable technique and material for each individual procedure, and it provides more information than MR concerning the surrounding parenchyma and the presence of associated co-morbidities. Furthermore, technological advances have reduced acquisition times to a minimum (a few seconds) and reduced the radiation dose to acceptable levels. The main limitation of angio-CT is the use of the iodinated contrast media: these may be nephrotoxic in this category of patients, especially as it is followed by endovascular treatment using arteriography, which uses the same type of contrast [71,72].

- PAD should be suspected and assessed in all diabetic subjects with foot ulcers.
- ABI and TBI are good screening tests.
- A semiological diagnosis of PAD is not reliable in diabetics.
- The non-invasive evaluation of PAD requires the integration of various tests.
- TcPO₂ can predict the healing potential of ischaemic or ulcerative lesions.
- Doppler ultrasonography provides morphological and functional information with a good degree of sensitivity and specificity.
- Angio-MR or angio-CT is used when further diagnostic details are required.
- Angiography should never be considered an exclusively diagnostic test.

Medical therapy

There are currently no published data concerning any medical treatment of PAD other than revascularisation. However, it is important to correct any modifiable risk factors for cardiovascular disease, especially perioperatively and during the follow-up.

Vasodilators

Prostanoid treatment (i.e., the intravenous infusion of a stable prostacyclin (PGI₂) analogue such as iloprost/Alprostar for 3–4 weeks) is not an alternative to peripheral revascularisation in diabetic patients with PAD [73]. For ethical reasons, no randomised clinical trials have been carried out in order to compare the efficacy of prostanoid treatment with that of surgery in patients with critical ischaemia. However, it is important for relieving pain while awaiting surgical revascularisation, improving post-revascularisation perfusion and improving the patients’ quality of life [74].

Anti-platelet agents/anticoagulants

In relation to anti-thrombotic/anticoagulant treatment for the primary and secondary prevention of PAD, we recommend following the ninth edition (2012) of the guidelines of the American College of Chest Physicians and other recent reviews [75–78]. Diabetic patients aged >50 years who are asymptomatic for PAD should undergo primary prevention using long-term daily aspirin monotherapy (75–100 mg), as in the case of cardiovascular events. In the case of secondary prevention, various stages need to be distinguished:

- Symptomatic PAD (intermittent claudication): aspirin (75–100 mg day⁻¹) or clopidogrel (75 mg day⁻¹).
Dual anti-platelet and anticoagulant treatment is not advisable.

- PAD with intermittent claudication and reduced physical exercise capacity (without lesions): cilostazol (100–200 mg day\(^{-1}\)) in addition to aspirin (75–100 mg day\(^{-1}\)) or clopidogrel (75 mg day\(^{-1}\)).

Pentoxifylline, heparinoids and prostanoids are not advisable.

- Chronic limb ischaemia or symptomatic PAD and critical ischaemia/pain at rest/ischaemic lesions awaiting revascularisation: aspirin (75–100 mg day\(^{-1}\)) or clopidogrel (75 mg day\(^{-1}\)).

- Before and after percutaneous transluminal angioplasty (PTA): dual anti-platelet treatment with aspirin (75–100 mg day\(^{-1}\)) and clopidogrel (75 mg day\(^{-1}\)) for 1 month, followed by long-term single anti-platelet therapy.

- The guidelines of the European Society of Vascular Surgery state that the use of oral anticoagulants during the first 6 months after surgical revascularisation increases the primary patency of the graft, although it is not highly recommended. [79]

The role of the more recent anticoagulants has yet to be evaluated especially in terms of their cost/efficacy ratio and the risk of bleeding in relation to the obvious advantage of less frequent blood chemistry checks.

- There is no evidence concerning the use of PAD treatments other than revascularisation in diabetic patients.

- It is essential to correct risk factors perioperatively and during follow-up.

- Vasodilators are not indicated for the treatment of PAD in diabetic subjects.

- Anti-platelet therapy is always indicated in diabetics with PAD.

Non-revascularisable patients or candidates for primary amputation

Primary amputation is a demolitive operation that is not preceded by any attempt at revascularisation, and it is considered primary therapy only in some cases of DF. Major amputations (above the ankle) are necessary when there is a life-threatening infection that cannot be controlled by antibiotics. In this context, amputation is indicated on the basis of the patient’s general condition and the fact that any delay could affect patient survival.

The next aspect to consider is the residual function of the limb during the post-reparative phase: necrosis extending to most of the foot will surely prevent functional recovery and therefore it is unnecessary to proceed to revascularisation.

Some patients have a functional deficit that is independent of the foot lesion (sequence of a stroke, the position of the limb in flexion, etc.) and it effectively prevents deambulation. In such cases, a major amputation does not alter the patient’s quality of life and may even lead to an improvement because it allows the prompt resolution of a major clinical problem such as infection or pain.

The primary aim of an amputation is to heal the leg as distally as possible. The energy spent on deambulation increases with level of the amputation. Preservation of the knee and a significant part of the tibia allows the use of a light prosthesis, as well as the early and independent deambulation of old or debilitated patients. In brief, the ideal level of amputation is the most distal level that has a possibility of healing, which is about 90% in the case of above-the-knee amputation and 80% if the joint is preserved. In clinical practice, healing capacity at a certain level can be predicted on the basis of TcPO\(_2\).

The return to deambulation plays an essential role in the quality of life, and major advances in the fields of prosthetics and rehabilitation now mean that this is a real possibility in 50% of cases.

- Primary amputation is indicated in the case of life-threatening infection or extensive necrosis of the foot.

Indications for revascularisation

PAD is a risk factor for amputation [51,80] and needs to be diagnosed early in order to be able to take all of the therapeutic measures necessary to avoid it as soon as possible.

In the case of a foot ulcer in a diabetic patient with PAD, it is first necessary to evaluate the usefulness of revascularisation and then choose the method of revascularisation on the basis of the following clinical criteria: the healing potential of the ulcer; the local condition of the foot and its residual function after the healing process; the condition of the vascular tree; and finally the general condition of the patient.

Healing potential refers to the real possibility of healing on the basis of foot perfusion. Transcutaneous oximetry and evaluating the pressure of the toe may be helpful because, in addition to stenoses and obstructions, they can determine whether distal blood flow is sufficient to guarantee tissue healing. According to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) document [81], foot lesions generally heal if toe pressure is >50 mm Hg and TcPO\(_2\) >50 mm Hg, whereas healing is a remote possibility if both are <30 mm Hg. However, it must be pointed out that TASC II does not specifically refer to diabetics but also includes the non-diabetic population.

In a critical review of TcPO\(_2\) levels, Faglia considers values of <34 mm Hg an absolute indication for revascularisation, with an 85% probability of amputation in the case of no revascularisation; values of 34–40 mm Hg represent a less compelling indication for revascularisation, but there is still a considerable probability of amputation (about 20%). In the case of values of >40 mm Hg, revascularisation can be considered if the tissue loss is significant and there is a need to accelerate healing, or in the...
presence of osteomyelitis for which conservative treatment is preferred [82].

In any case, once a perfusion deficit has been identified, revascularisation should always be considered. [83].

Another possible situation is one in which the limb is apparently perfused (TcPO₂ >40 mm Hg or toe pressure >50 mm Hg) but, despite optimal local treatment, the lesion shows no signs of healing. After having excluded general negative factors such as malnutrition or underlying osteomyelitis, it is necessary to consider the possibility that the non-invasive evaluations have overestimated peripheral perfusion and that there may be undetected ischaemia. In the presence of an ulcer that does not evolve positively within 4–6 weeks, an ischaemic component should always be suspected.

The condition of the foot and its potential functional recovery may above all condition the therapeutic choice of limb salvage or primary amputation. Gangrene may be the first sign of PAD in diabetic patients, and this may give rise to a false conviction that it is too late for revascularisation [84] and amputation is the only alternative. However, it should always be remembered that the local clinical picture may appear to be more compromised than it actually is because it may be greatly affected by an infection that can be cured with appropriate therapy, and so it may be possible to save a limb that at first sight seems definitely lost.

There are also situations in which the involvement is such that there is no possibility of saving the foot and major amputation is unavoidable. However, even in these cases (as in the case of partial amputation), it is essential to investigate the vascular tree because correcting underlying ischaemia may allow a more distal amputation and the more rapid healing of the amputated stump.

Even if a lesion is so large that limb salvage seems impossible or so small that it seems hardly worthy of a thorough diagnosis, the local condition of the foot should never condition therapeutic choices in absolute terms, although various studies have shown that a large ulcer is a risk factor for healing failure and major amputation [3,13].

The apparently obvious observation that a large ulcer implies an increased risk of major amputation disguises an extremely important aspect of managing DF: foot lesions are never large at the beginning but become so because of inadequate (and therefore ineffective) treatment or, even worse, the picture has been completely underestimated and inappropriate treatment has been continued for a long time. The concept of ‘time is tissue’ also applies to the foot, and so delayed or inadequate treatment leads to the irreversible loss of portions of foot tissue [85]. In particular, it has been demonstrated that, if a patient with an acutely phlegmonous foot is immediately referred to a tertiary centre [49], the outcome in terms of amputation is surely better than when he or she is first referred to a less suitable hospital because, in order to be effective, the necessary treatment (adequate surgical debridement and distal vascularisation) needs to be performed in a timely manner [86,87].

Another factor capable of significantly conditioning the choice and method of revascularisation is the involvement of the vascular tree. In order to define the type of intervention, it is important to assess the condition of the common iliac and femoral arteries, and equally important to evaluate distal run-off. There is no way that even optimal revascularisation will last over time without sufficient downstream blood flow: whether endoluminal or performed by means of bypass surgery, the revascularisation must allow the restoration of direct flow up to the dorsalis pedis or plantar arch [88].

One further aspect that needs to be considered is the patient’s general condition. The most important of the many factors to consider are life expectancy and the presence of co-morbidities, particularly heart failure and CRI. The supporters of bypass peripheral revascularisation require a minimum life expectancy of 2 years for a surgical approach, whereas neither technique is considered suitable if life expectancy is <6–12 months [89]. It is probably better not to generalise but to evaluate the situation from time to time, also considering the improved quality of life that comes from pain control when the ischaemia is removed. In terms of co-morbidities, the entire vascular tree needs to be carefully assessed: half of the patients with PAD may have concomitant coronary disease, one-third concomitant carotid disease and about 15–20% both [90], and this has both diagnostic and therapeutic implications.

In terms of diagnosis, diabetic patients should never undergo distal revascularisation without having undergone at least a cardiological evaluation (haemodynamic status and possibly coronary reserve) and an echo Doppler examination of the upper aortic trunks in the search for a haemodynamically significant plaque in the territory of the internal carotid artery. It is clear that priority should be given to the treatment of any coronary instability and/or significant carotid stenosis.

Diabetes and end-stage renal disease are independent risk factors for PAD. It has been reported that the prevalence of PAD among patients with end-stage renal disease is as high as 77% [91], and renal insufficiency is an independent predictor of the non-healing of ischaemic and neuro-ischaemic ulcers and major amputations [92,93].

Between 22% and 44% of dialysed patients undergo primary amputations because of ischaemic lesions. These patients are difficult to treat and their high short-term mortality rate (3–17%) and low long-term survival rate (45%) can negatively influence the decision to undertake revascularisation [94–98].

Dialysed patients treated with bypass surgery generally experience worse outcomes than those undergoing PTA [99], as has also been confirmed in a recent Japanese case series [100].

In relation to the endovascular treatment of diabetic patients with renal insufficiency, Lepantolo [8] says “that although there is no evidence supporting endovascular treatment over open by-pass surgery in these high-risk patients, endoluminal revascularisation seems to be attractive as a first option provided that the area of the ulcer can be provided with an adequate blood flow.” Rabellino et al.[101] used the endovascular technique and
achieved a limb salvage rate of 58.6% after a mean follow-up of 15 months, and Graziani [48] a salvage rate of 80% in a series of dialysed patients, about half of whom were diabetics. Finally, in another recent study of diabetics with PAD and severe foot lesions [13], outcomes were clearly worse in the patients on dialysis, although a 1-year limb salvage rate of 57% was reached in a subsequent series of unselected patients [102].

Although it is a non-modifiable risk factor, patient age also needs to be considered. Adults up to the age of 65–70 years do not give rise to any age-related problems and treatment decisions can be made more freely when a patient's clinical and chronological age coincide, but the situation is different in the case of elderly patients with more severe co-morbidities. Studies of bypass surgery and angioplasty have shown that age is not an impediment to either, and even the elderly can benefit from revascularisation in terms of limb salvage even though it does not change their final life expectancy [103].

In brief, as in the case of non-diabetic patients, the indication for revascularisation in diabetics depends on their clinical picture. Revascularisation is indicated in patients with chronic obstructive arterial disease and:

- disabling claudication and/or pain at rest and
- a trophic lesion and foot TcPO2 of <30 mm Hg or a trophic lesion that shows no sign of healing after being adequately treated for 1 month.

The (absolute or relative) exclusion criteria are a life expectancy of <6 months, psychiatric disorders, untreated antalgic flexion of the leg on the thigh, chronic bed confinement and the absence of deambulation.

- Once a perfusion deficit has been diagnosed, revascularisation should always be considered.
- The surgical treatment of any coronary and/or carotid perfusion deficit has priority over peripheral revascularisation.
- Diabetic patients with end-stage renal disease treated by dialysis may be candidates for revascularisation if they have:
 - chronic obstructive arterial disease,
 - disabling claudication and/or pain at rest,
 - a trophic lesion and a TcPO2 of <30 mm Hg and
 - an ulcer that shows no sign of healing after being adequately treated for 1 month.
- Exclusion criteria are:
 - a life expectancy of <6 months,
 - severe psychiatric disorders,
 - absence of deambulation and
 - untreated antalgic flexion of the leg.

Choice of revascularisation technique

‘Angioplasty first’ strategy

Various studies have evaluated the role of PTA in diabetic patients with critical PAD, especially diseases of the infra-popliteal vessels [2,12,13,15,17,104–113], the overall results of which are favourable in terms of feasibility, technical efficacy, the reduced number of complications and limb salvage rates.

Although long-term patency is better after bypass surgery than after angioplasty, which is burdened by a high restenosis rate [114–117], angioplasty can also be proposed for patients who cannot be candidates for a bypass because of significant co-morbidities, a reduced life expectancy, infection or gangrene in the possible sites of distal anastomoses, the unavailability of suitable veins or the absence of an adequate ‘landing zone’ for the distal part of the bypass [2,13,15,103,111].

Many patients with critical ischaemia are elderly, affected by multiple co-morbidities and at high operative risk [30,118]. These are unsuitable for surgical revascularisation, but a percutaneous procedure (technically reduced to the minimum possible invasiveness) can still be considered in order to improve their quality of life. Angioplasty does not require general anaesthesia and can be carried out with few contraindications in cardio- and nephropathic subjects at high surgical and anaesthetic risk [2,15,111]. In complex cases, it can be divided into various steps in order to reduce stress and the volume of contrast medium administered, by evaluating the clinical result and renal function after each step. In this way, more aggressive revascularisation can be restricted to the patients who really need it and whose renal function has not worsened.

Angioplasty can be easily repeated in the case of restenosis or reocclusion or be performed after the failure of bypass surgery [2,119–121].

The considerable industrial effort that has been made to create new instruments (very long, low-profile balloons, drug-eluting balloons, atherotomes, medicated and non-medicated stents, etc.) means that angioplasty can be increasingly proposed even in extreme situations and assures the better long-term patency of the treated vessels [121–126].

When patients can be treated either surgically or percutaneously, the fundamental rule of an ‘angioplasty first strategy’ is to respect the so-called surgical ‘landing zones’. It can generally be said that the failure of angioplasty does not preclude subsequent bypass surgery [127], but there are reports indicating that a distal bypass procedure is more difficult after the failure of percutaneous revascularisation and associated with more complications and failures [128,129]. It is therefore imperative that percutaneous revascularisation procedures be carried out by experts capable of correctly identifying and technically respecting the ‘landing zones’ required for a subsequent distal bypass salvage operation. It is also necessary to use stents very carefully because any restenosis/reocclusion makes subsequent (surgical or percutaneous) treatment difficult or impossible.

By the same token, the use of open surgery should not compromise the possibility of future percutaneous treatment: for example, ligation of the superficial femoral artery makes it impossible to perform a subsequent percutaneous intervention to restore its patency in the case of bypass failure.
Even in the context of an ‘angioplasty first’ approach, there are some forms of vascular obstruction that should preferentially be treated surgically. Obstructive disease of the common femoral artery and its bifurcation are generally not related to diabetic arterial disease [130], and can be resolved by means of relatively trauma-free surgery requiring little anaesthesia in almost all cases. Another example is an extremely long occlusion of the femoro-popliteal and infra-popliteal axes, although there is no consensus concerning the length of the obstruction and local expertise is particularly important: the percutaneous treatment of such lesions is currently burdened by a high incidence of restenosis and repeat procedures [115,130,131], whereas a distal bypass in an autologous vein is a more effective and longer-lasting solution [114,115,132].

Surgical revascularisation by means of a bypass should be performed after having visualised the vascular tree by means of Doppler ultrasonography, angio-CT, angio-MR or angiography, and considered a series of important variables that condition the success of the procedure and its complications (see flow chart in Fig. 1).

The patient’s general clinical condition: The risks associated with bypass surgery (the type of bypass and the type of anaesthesia) should be evaluated in relation to the patient’s clinical condition (age, co-morbidities and life expectancy).

Foot lesions: Percutaneous revascularisation can be proposed for substantially any type of foot lesion, but bypass surgery requires a careful evaluation of the site of distal anastomosis, which may be more or less affected by tissue alterations. Both methods should also be evaluated on the basis of the type of orthopaedic surgical correction programmed for the type of lesion: forefoot amputations can interrupt vascular connections between the dorsal and plantar systems making their respective vascularisations functionally ‘terminal’.

The type of ‘bypass’ (prosthesis/vein): It is necessary to consider the type of bypass (proximal/distal), the availability of a vein and its quality.

Vessel destined for distal anastomosis: The characteristics of the vessel used to receive the distal anastomosis of the bypass should be evaluated: its diameter, the presence of disease/calcifications, the site of the ischaemic lesion and the presence of small distal vessel disease causing a poor distal run-off [133,134]. While bypass surgery can be applied only when a suitable distal target vessel is recognised at some level in the vascular tree of the leg, angioplasty can be extended to the foot vessels, opening and improving the foot distribution system in the case of very distal disease [135–137]. The pedal–plantar loop technique can often restore a direct arterial inflow from both tibial arteries achieving a complete below-the-knee and below-the-ankle revascularisation and providing a high rate of acute success, intended as the ability to cross the lesions and inflate the balloon, achieving adequate angiographic results, without periprocedural complications [138–141].

- PTA in diabetic patients with PAD is feasible and technically efficient, reduces the number of complications and increases limb salvage rates because it can be applied in patients unsuitable for bypass surgery.

Figure 1 Revascularisation strategy in diabetic patients with critical limb ischaemia due to extensive disease of the femoro-popliteal axis and/or infrapopliteal vessels.
PTA can also be proposed for patients with co-morbidities, a reduced life expectancy and significant tissue involvement.

- PTA should be carried out in such a way that it does not preclude subsequent bypass surgery.

- Classical surgery is indicated in the case of the involvement of the common femoral artery and its bifurcation, or extremely long occlusions (as judged by the surgeon) of the femoro-popliteal and infra-popliteal arteries.

Objectives of revascularisation

Correctly identifying the vascular anatomy of the patient in relation to his/her tissue lesions is fundamental for guiding decisions concerning the strategy of revascularisation.

- Complete revascularisation.

- Wound-related artery

When it is not possible to obtain complete revascularisation for technical reasons or because of the need to reduce the duration of the procedure and the dose of contrast medium, efforts should concentrate on the wound-related artery, that is, the revascularisation should aim at reopening the artery irrigating the angiosome of the foot affected by the ischaemic lesion(s) [142]. The results showed that complete revascularisation is better than partial revascularisation: the 1-year limb salvage rate was 56% without any direct flow to the foot (no open infra-popliteal vessels) and, respectively, 73%, 80% and 83% with one, two and three open vessels. Faglia demonstrated that angioplasty of the tibial arteries led to better results in terms of limb salvage than the revascularisation of the peroneal artery alone [143].

- In the case of technical impossibility, it is better to target the recanalisation of the wound-related artery in accordance with the concept of angiosomes.

- Revascularisation should be personalised on the basis of the overall clinical picture of the foot.

Follow-up of revascularised patients

There are currently no unequivocal criteria that define with certainty the most appropriate follow-up methods for patients who have undergone revascularisation because of ischaemic DF. This is probably due to the heterogeneity of patients with CLI: these may be relatively young with a good life expectancy and be suitable for the application of severe follow-up criteria that consider vascular, tissue and general aspects. However, there are also patients characterised by a ‘terminal’ picture of widespread atherosclerotic disease, who therefore have a very limited life expectancy in whom the follow-up should be less invasive.

Generally, the follow-up should be clinical, oximetric and/or ultrasonographic, and the examinations should take place 1, 3, 6 and 12 months after treatment, and every 12 months thereafter. However, just as the treatment of DF needing a multidisciplinary approach, we believe that the follow-up of revascularised patients should also be global, multidisciplinary and personalised, and take into account the following key elements.

Vascular follow-up criteria

The criteria indicating the purely haemodynamic success of revascularisation are primary and secondary patency, that is, the capacity of the revascularisation procedure to guarantee the continued patency of the treated vessel or bypass [41].

In the case of a bypass, the follow-up should include Doppler ultrasonography in order to detect any restenosis (generally of the anastomosis) or the upstream or downstream progression of bypass disease; the treatment of such obstructions is fundamental as it prolongs the life of the bypass itself [149]. Although randomised trials have not shown any real benefit of a close follow-up in vein bypasses [150–152], there is a clear benefit in the prosthetic or composite bypasses [153,154]. The recent guidelines of the European Society of Vascular Surgery recommend at least using the ankle brachial index to select patients who should be sent for a Doppler ultrasonography examination [155].

In the case of percutaneous revascularisation, the follow-up criteria are uncertain. Given that extreme revascularisation of the infra-popliteal arteries is burdened by early restenoses (70% after 3 months) [131], an exclusively vascular follow-up aimed at identifying and treating such restenoses could lead to an incessant re-treatment without reflecting the clinical reality. The occurrence of restenosis is not always an indication for re-treatment per se, but re-treatment should be considered in patients with
recurrent clinical symptoms or patients in whom the process of wound healing has been interrupted.

However, it is important to recognise that in some patients percutaneous revascularisation enables the reopening of extended segments of multi-level vessels, often with extreme difficulty. It allows the reconstruction of a fragile flow line up to the foot, to which the maintenance in time through a close vascular follow-up protocol, the same way as for distal bypasses, can be deemed necessary. A focal restenosis can be simply, rapidly and often lastingly treated, whereas its subsequent evolution into occlusion (and the consequent extension of the upstream and downstream thrombosis of the original lesion) needs more complex treatment, especially in the case of intra-stent occlusions, and is burdened by a high rate of recurrence.

A follow-up based on vascular criteria should therefore be personalised for each individual patient and based on the type of revascularisation.

Perfusional follow-up criteria

By ‘perfusional criteria’, we mean TcPO₂ measurements that indicate the real degree of tissue perfusion regardless of whether it occurs through patent native vessels, revascularised vessels or collateral circulation. Given the relationship between healing potential and oximetry values, periodic oximetric evaluations are surely helpful, especially in patients whose skin lesions show little sign of healing notwithstanding revascularisation. Oximetry values of <30 mm Hg are indicative of low tissue perfusion, but it might be useful to repeat the measurement after a few days before considering the revascularisation a failure because it has been observed that TcPO₂ values gradually increase 1 month after successful revascularisation, whereas they remain low in the case of ineffective revascularisation [156].

Clinical follow-up criteria

These criteria include limb salvage (the avoidance of major amputation of the leg or thigh), wound healing (the complete closure of skin lesions) and healing after ‘minor amputation’ of the toes, rays or tarsal region. Clinical criteria such as the healing time of foot lesions, the restoration of walking capacity and the time needed for this restoration (time to walking) are currently underestimated in the literature and should be reconsidered as primary criteria.

General follow-up criteria

One of the aspects that can never be emphasised enough is the close relationship between diabetes and cardiovascular diseases. If this is true for the diabetic population in general, it is even truer for those with ongoing vascular complications. About 50% of diabetic patients with PAD have an associated coronary disease, 30% have carotid artery disease and about 15–20% have both simultaneously. Recent data show that patients with PAD treated successfully by percutaneous lower extremity revascularisation have better cardiovascular outcomes than those treated by conservative medical therapy alone [157]. The known cardiovascular risk factors, such as hypercholesterolaemia, hypertension and smoking, are made more aggressive by the presence of diabetes, particularly if there is no metabolic compensation. Given the pathogenic role played by risk factors in the manifestation and rapid evolution of cardiovascular disease, it can be presumed that they can also significantly influence the results of revascularisation over time and the reparative response of tissue lesions.

1. Revascularisation should always be followed by a strict follow-up.
2. Periodic oximetric evaluations should be performed.
3. Clinical symptoms and ulcer evolution must be frequently monitored.
4. Cardiovascular risk factors must be corrected.

References

Spinelli F, Stillo F, Benedetto F, De Cardi G, La Spada M. Early and one-year results of infragenicular bypass after failure of endo-

Please cite this article in press as: Aiello A, et al., Treatment of peripheral arterial disease in diabetes: A consensus of the Italian Societies of Diabetes (SID, AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE), Nutrition, Metabolism & Cardiovascular Diseases (2014), http://dx.doi.org/10.1016/j.numecd.2013.12.007
Treatment of peripheral arterial disease in diabetes

Giugliano G, Di Sera

Please cite this article in press as: Aiello A, et al., Treatment of peripheral arterial disease in diabetes: A consensus of the Italian Societies of Diabetes (SID, AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE), Nutrition, Metabolism & Cardiovascular Diseases (2014), http://dx.doi.org/10.1016/j.numecd.2013.12.007